The Role of Local Mechanical Factors in the Pathogenesis of Knee Osteoarthritis: Implications for Rehabilitation Strategies

Emerging Prevention and Intervention Strategies for Knee Osteoarthritis that Target Mechanical Factors
Alison H. Chang, PT, DPT, MS
Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University

Disclosure
Nothing to disclose

Objectives
Discuss clinical evidence of modifying mechanical factors in management of knee OA

1. Global approach
 - weight loss, slow walking speed

2. Proximal approach
 - minimize contra-lateral pelvic drop, unilateral trunk lean

3. Local approach
 - quads strengthening, medial thrust gait, medial collapse gait, neuro-muscular training, elliptical training, knee unloading brace

4. Distal approach
 - toe-out gait, lateral wedge insole, footwear

Pathogenesis of knee OA
- Impaired knee local neuro-mechanical environment
- Systemic vulnerability
- Previous knee injuries
- Muscle weakness
- Malalignment
- Laxity & Instability
- Proprioception
- Vibratory perception threshold
- Genetic factors
- Obesity
- Aging

External knee adduction moment (KAM)
- 70% of the knee joint load passes thru the medial compartment due to the ground reaction force passing medial to the joint axis
- Torque closing medial compartment in stance phase of gait
- Strongly relates to medial load and medial compartment disease progression
- Often used as an indirect measure of medial joint loading in many biomechanical studies and load-modifying trials

External knee adduction moment (KAM)
- Hurwitz et al., 1998; Miyazaki et al., 2002; Bennell et al., 2011
The Role of Local Mechanical Factors in the Pathogenesis of Knee Osteoarthritis: Implications for Rehabilitation Strategies

Global approach
• weight loss
• slow walking speed

Proximal approach
• control pelvic drop
• trunk lean

Local approach
• quads strengthening
• medial thrust & collapse gait
• neuro-muscular training
• elliptical training
• knee brace

Distal approach
• toe-out gait
• lateral wedge insole
• footwear

Weight loss
• Design: assessor-blinded RCT
• Participants: overweight or obese elderly with radiographic knee OA (n=76)
• Intervention: any of 4 interventions of exercise, diet, exercise + diet, healthy lifestyle (control)
• Outcome: peak knee compressive force, KAM
• Follow-up time: 18 months
• Findings: high weight loss group (10% change) had decreased peak knee compressive force, but no change in KAM

Weight loss - Caveat
➢ Other studies have shown that weight loss may reduce pain and improve function, however the mechanisms may not be completely related to reduced joint load
➢ Weight loss > 10% appears to be beneficial
➢ Knee malalignment may mediate the effect of weight loss on medial knee load

Weight loss
• Design: single group pre- and post-intervention comparison
• Participants: obese persons with knee OA (n=157)
• Intervention: diet
• Outcome: peak knee compressive force, KAM
• Follow-up time: 16 weeks
• Findings:
 - average wt loss: 13.5%
 - decreased peak knee compressive force and KAM
 - decreased pain and increased walking speed

Walking speed
• Design: single group within subject comparison
• Participants: persons with medial knee OA (n=44)
• Intervention: walking at self-selected vs. slow vs. fast speed
• Outcome: KAM (1st and 2nd peak)
• Follow-up time: immediate
• Findings:
 - Positive correlation between gait speed and 1st KAM, especially in knees with mild disease

Property of Alison H. Chang, PT, DPT, MS; Use with express written permission from the author
Walking speed

- **Design:** single group within subject comparison
- **Participants:** persons with knee OA (n=34)
- **Intervention:** fast vs. self-selected vs. slow walking speed on treadmill
- **Outcome:** peak KAM
- **Follow-up time:** immediate
- **Findings:**
 - In severe OA (K/L=4), slow speed resulted in a small KAM reduction; fast speed did not change KAM
 - In moderate OA (K/L=2-3), slow speed did not change KAM; fast speed resulted in a small KAM increase

(Zeni & Higginson, 2009)

Walking speed - Caveat

- The effects of walking speed on KAM are inconsistent
- More severe knee OA may not respond to gait speed change
- To cover the same distance, slower walking speed may require more gait cycles and may yield similar cumulative knee load
- Physical function may be affected with significantly lower walking speed

Walking speed

- **Design:** single group within subject comparison
- **Participants:** persons with knee OA (n=41)
- **Intervention:** increase gait speed to 150% of natural pace
- **Outcome:** peak KAM
- **Follow-up time:** immediate
- **Findings:**
 - no change in overall KAM magnitude
 - Increased 1st peak KAM and decreased 2nd peak KAM

(Landry et al, 2009)

Hip abductor strengthening

- **Design:** single group within subject comparison
- **Participants:** persons with medial knee OA (n=6)
- **Intervention:** strengthening ex. on hip abductors, quads, and hamstrings in both weight-bearing (WB) and non WB
- **Frequency:** 1:1 training session with a PT 3x/wk for 2 wks, then 1x/wk for 2 wks; home ex. on other days
- **Outcome:** peak KAM, pain, and function
- **Follow-up time:** 4 wks
- **Findings:**
 - 9% mean reduction of KAM
 - decreased pain and improved WOMAC function

(Thorp et al., 2010)
Hip abductor strengthening

- **Design**: non-equivalent control group (no knee OA or pain), within subject comparison
- **Participants**: with medial knee OA & controls (n=40 each)
- **Intervention**: home exercise programs of hip abductor strengthening in both WB and non-WB positions
- **Controls**: continue daily activities
- **Frequency**: home ex. 3-4x/wk for 8 wks
- **Outcome**: peak KAM, pain, and function
- **Follow-up time**: 8 wks
- **Findings**:
 - no change of peak KAM in both groups
 - decreased pain and improved chair-stand function in intervention group

(Fied et al., 2010)

Hip abductor strengthening

- **Design**: assessor-blinded RCT
- **Participants**: medial knee OA (n=39 in strengthening, n=37 in control)
- **Intervention**: supervised home exercise programs of hip abductor & adductor strengthening in both WB and non-WB
- **Controls**: no intervention
- **Frequency**: home ex. 5x/wk for 12 wks
- **Outcome**: peak KAM, pain, and function
- **Follow-up time**: 12 wks
- **Findings**:
 - no change of peak KAM in both groups
 - intervention group had ↑ contralateral pelvic drop
 - decreased pain and improved function

(Bennell et al., 2010)

Femoral brace

- **Design**: single group within subject comparison
- **Participants**: persons with medial knee OA (n=15)
- **Intervention**: use SERF (stability through ER of the femur) strap to promote hip ER and abduction during walking
- **Outcome**: peak KAM, pelvic drop angle, and pain
- **Follow-up time**: immediate
- **Findings**:
 - 28% reduction of peak KAM
 - 35% reduction of pain on VAS
 - decreased contra-lateral pelvis drop by 2°
 - increased ipsi-lateral hip abduction angle by 3°

(Wallace et al., 2010)

Hip control - Caveat

- **Hip abductor strengthening ex. program decreased pain and improved function, but it’s role in KAM reduction may be limited**
- **Other LE muscles were also strengthening in WB exercises**
- **Minimizing contra-lateral pelvic drop during gait significantly reduced medial knee load**
- **Gait training and motor control of hip movement during walking may be more beneficial than muscle strengthening alone**

Ipsi-lateral trunk lean

- **A compensatory gait strategy of rapid shift of body weight to the stance limb and lateral trunk sway to reduce external knee adduction moment (KAM)**

(Mundermann et al., 2005; Briem et al., 2009; Hunt et al., 2008 & 2010)

Ipsi-lateral trunk lean

- **Design**: single group within subject comparison
- **Participants**: young healthy (n=19)
- **Intervention**: instructed to move their trunk from side to side to self-selected amount during walking
- **Outcome**: peak KAM
- **Follow-up time**: immediate
- **Findings**:
 - mean lateral trunk lean angle = 10°
 - 64% reduction of 1st peak KAM
 - no change of 2nd peak KAM

(Mundermann et al., 2008)
Ipsi-lateral trunk lean

- **Design:** single group within subject comparison
- **Participants:** young healthy (n=9)
- **Intervention:** practiced to walk with 3 conditions of trunk lean (4°, 8°, and 12°), using real-time biofeedback of the actual trunk lean angle

(Hunt et al., 2011)

Ipsi-lateral trunk lean - Caveat

- Ipsi-lateral trunk lean during walking can significantly reduce KAM
- No trials on elderly persons with knee OA
- This movement pattern may help to reduce KAM, but may also perpetuate hip abductor weakness and adversely affect spinal mechanics
- Need to closely monitor adverse effects on other joints

Quadriceps strengthening

- **Design:** assessor-blinded RCT
- **Participants:** medial knee OA (n=49 in strengthening, n=48 in control)
- **Intervention:** supervised home exercise programs of quad strengthening in non-WB positions
- **Controls:** no intervention
- **Frequency:** home ex. 5x/wk for 12 wks
- **Outcome:** peak KAM, pain, and function
- **Follow-up time:** 12 wks
- **Findings:**
 - no change of peak KAM in both groups
 - pain reduction only in intervention group with neutrally-aligned knees
 - no change of physical function

(Lim et al., 2010)
Quadriceps strengthening

- **Findings:**
 - In OA knees, quad strengthening group had non-significant lower rate of OA progression than ROM group (18% vs. 28%, p = 0.094)
 - In knees that were radiographically normal at baseline, quad strengthening group had greater rate of joint space narrowing > 0.5mm than ROM group (34% vs. 19%, p = 0.038)
 - Both groups lost quadriceps strength at 30 months, though strengthening group had less strength loss

(Mikesky et al., 2006)

Factors contributing to varus mal-alignment or instability

- Decreased passive tissue stiffness
- Loss of cartilage & meniscus
- Impaired sensory input
- Poor active muscular stabilization

Frontal plane instability/mal-alignment

Medial thrust gait

- **Design:** single subject
- **Participants:** 37 y/o male with medial knee OA (K/L=2)
- **Intervention:** based on computer optimization, he was instructed to practice “medial thrust gait”
- **Outcome:** peak KAM
- **Follow-up time:** learning the new gait over 9 months
- **Findings:**
 - 50% reduction of KAM

(Fregly et al., 2007)

Medial collapse gait

- **Design:** single group within subject comparison
- **Participants:** young healthy individuals with varus alignment (n=8)
- **Intervention:** treadmill walking with hip IR and adduction, using real-time biofeedback of the knee varus angle info
- **Outcome:** peak KAM
- **Follow-up time:** 8 sessions of training over 1 month
- **Findings:**
 - 19% reduction of KAM
 - knee varus angle ↓ by 2°

(Barrion et al., 2007)

Gait modification for varus thrust

- **Design:** single subject
- **Participants:** 64 y/o female with medial knee OA and varus thrust during gait
- **Intervention:** gait modifications of ipsi-lateral trunk lean, ↑ toe-out angle (self-selected magnitude), lateral wedged insole, and custom-made foot orthotics
- **Outcome:** peak KAM
- **Follow-up time:** immediate
- **Findings:**
 - variable performance from trial to trial
 - both trunk lean and toe-out reduced KAM
 - only trunk lean ↓ varus thrust angle by 38% (Hunt et al., 2011)

Quadriceps strengthening - Caveat

- Focusing on quad strengthening alone may not beneficial
- Strengthening program should be tailored to knee subsets with different mechanical characteristics, such as varus/valgus mal-alignment or laxity
- Emphasize on proper knee dynamic alignment during all exercises and functional activities, i.e. maintaining neutral dynamic frontal and transverse alignment through motor control, foot orthotics, and bracing, or taping
The Role of Local Mechanical Factors in the Pathogenesis of Knee Osteoarthritis: Implications for Rehabilitation Strategies

Gait modification with real-time feedback of KAM

• Design: single group within subject comparison
• Participants: young healthy (n=16)
• Intervention: real-time visual or vibratory feedback of the magnitude of peak KAM provided while walking on treadmill
• Outcome: peak KAM, awkwardness scale (0-10)
• Follow-up time: immediate
• Findings:
 - mean reduction of peak KAM = 21%, ranging from 3 to 50%
 - common strategies: toe-in (n=14), loading medial side of foot (n=6), increased trunk sway (n=4)
 - average awkwardness = 5.3

(Wheeler et al., 2011)

Gait modification - Caveat

➢ Modifying gait appears to be a promising approach to reduce medial knee load and dynamic varus instability, and may ultimately alter disease course
➢ Need to monitor kinematic and kinetic changes at other regions of body
➢ Medial thrust or collapse gait may harm PFJ
➢ Current research are very limited; studies on elderly with knee OA and larger-scale RCTs are needed
➢ Long-term effects and retention of the modified gait patterns are unknown

Neuro-muscular training

• Design: single group within subject comparison
• Participants: women with early radiographic knee OA (K/L I or II) (n=11)
• Intervention: LE strengthening and neuromuscular training in WB
• Frequency: 2x/wk
• Outcome: peak KAM (during one-leg rise from stool and during gait)
• Follow-up time: 8 wks
• Findings:
 - reduction of KAM observed during lone-leg rise, but not during gait

(Thorstensson et al., 2007)

Neuro-muscular training

• Design: assessor-blinded RCT
• Participants: knee OA (n=91 in treatment, n=92 in control)
• Intervention: agility and perturbation training + standard ex. therapy
• Controls: arm bike activity + standard ex. therapy
• Frequency: 12 supervised sessions in 6-8 wks, continue ex. 2x/wk
• Outcome: function and pain
• Follow-up time: 2-, 6, and 12-month follow-up periods
• Findings:
 - improved self-reported function in both groups
 - no change in pain or performance-based function in either group

(Fitzgerald et al., 2011)

Examples

Courtesy of Dr. Kelly Fitzgerald

Examples

Courtesy of Dr. Kelly Fitzgerald

Property of Alison H. Chang, PT, DPT, MS;
Use with express written permission from the author
Elliptical neuromuscular training

- Design: single subject
- Participants: 43 y/o male with medial knee OA and varus thrust during gait
- Intervention: training on the modified elliptical exerciser, responding to frontal plane perturbation by the footplate
- Frequency: 3x/wk
- Outcome: function, pain, and subjective report of instability
- Follow-up time: 6 weeks
- Findings:
 - 25% and 18% improvement in pain and function respectively
 - resolution of complaints of instability
 - frontal plane stability improved from 2.05 to 1.08cm
 (Chang et al., 2011)

Neuromuscular training - Caveat

- Neuromuscular training targeting knee frontal and transverse plane motor control during functional weight bearing activities may be beneficial
- Frontal plane stability may be improved via programmed external varus-valgus perturbation

Unloading knee brace

- Previous studies have shown that knee valgus unloading brace reduced peak KAM by 13% to 25% during the stance phase of gait
 (Pollo et al., 2002; Self et al., 2000)
- Clinical trials showed variable and inconsistent improvement in pain and function
 (Brouwer et al., 2005; Krohn, 2005)

Unloading knee brace - caveat

- Neoprene or hinged brace may also be beneficial for reducing muscle co-contraction
- Unloading knee brace may be used only in more intense physical activities, such as tennis or jogging
- Women tend to have compliance issue
The Role of Local Mechanical Factors in the Pathogenesis of Knee Osteoarthritis: Implications for Rehabilitation Strategies

Global approach
- weight loss
- slow gait speed

Proximal approach
- control pelvic drop
- trunk lean

Local approach
- strengthening
- medial thrust & collapse gait
- neuro-muscular training
- elliptical training
- knee brace

Distal approach
- toe-out gait
- lateral wedge insole
- footwear

Toe-out gait

- **Design:** single group within subject comparison
- **Participants:** persons with mild to moderate knee OA (n=9)
- **Intervention:** increase toe-out angle by 15° during gait, using visual cues of lines drawn on the force plate
- **Outcome:** 1st and 2nd peak KAM
- **Follow-up time:** immediate
- **Findings:**
 - 55% reduction of 2nd peak KAM
 - no change of 1st peak KAM

(Guo et al, 2007)

Toe-out gait

- **Design:** single group within subject comparison
- **Participants:** persons with knee OA (n=12)
- **Intervention:** three walking conditions (1) natural foot angle (2) toe-out (3) toe-in
- **Outcome:** 1st and 2nd peak KAM
- **Follow-up time:** immediate
- **Findings:**
 - toe-out gait ↓ 2nd peak KAM, did not change the 1st peak KAM
 - toe-in gait did not change KAM values

(Lynn and Costigan, 2008)

Toe-out gait - Caveat

- Walking with toe-out may help to reduce 2nd peak KAM
- Potential sources of out-toeing
 1. tibial ER
 2. hip ER
 3. combination of both

Caution: not to compromise the normal function of the foot, knee, and hip

Lateral wedged insole

- **Lateral wedged insole**
 - moves the center of pressure laterally
 - reduce the moment arm of ground reaction force acting at the knee joint
 - decrease KAM and lessen the medial joint load
- 2-year RCT demonstrated reduced intake of NSAIDS, but no change of pain/function or slow disease progression
 (Pham et al., 2004)
- 6-wk double-blinded randomized crossover trial showed no clinically meaningful improvement in pain
 (Baker et al., 2007)
The Role of Local Mechanical Factors in the Pathogenesis of Knee Osteoarthritis: Implications for Rehabilitation Strategies

Lateral wedged insole
- **Design**: participant-blinded RCT
- **Participants**: medial knee OA (n=20 in treatment, n=25 in control)
- **Intervention**: 5°-15° full length insole worn daily for 12 months
 - Posting determined by pain response during 8” lateral step down, non-responders eliminated from the study
 - Participants wore standardized walking shoes
- **Controls**: neutral insole without wedging
- **Outcome**: WOMAC pain, function
- **Follow-up time**: insole worn daily for 12 months
- **Findings**:
 - Both groups improved in pain and function
 - Neutral insole did as well as the lateral wedged one
 - Standardized footwear may contribute to favorable outcomes in both groups (Barrios et al., 2009)

Lateral wedged insole - Caveat
- Variations in shoe types or ankle/foot characteristics may mediate the biomechanical effects of wedge insole
- Classify patients into subgroups of responders vs. non
- Use a wedge at about 5° and full length
- Daily use of 5-10 hours
- Persons with less severe disease, younger age, and less obesity tend to benefit more
- Patients with immediate favorable responses tend to have greatest long-term functional gain and pain reduction
- Monitor potential problems with ankle/foot with use of wedges

Footwear
- Gait studies showed that barefoot walking had lower KAM than walking with shoes in persons with medial knee OA – ranging from 7.4-11.9% (Shakoor et al., 2006; Kemp et al., 2008)
- Mechanism of why barefoot walking reduces knee load is unclear, possibly due to:
 - Reduce peak ground reaction force
 - Promote mid-foot strike and minimize impact transient
 - Increase foot intrinsic muscle activity
 - Enhance proprioceptive inputs
 - Shoes that simulate barefoot walking may be beneficial

Footwear – mobility shoe
- **Design**: single group within group comparison
- **Participants**: persons with medial knee OA; n=28 and 20 in groups A and B respectively
- **Intervention**:
 - Group A: mobility shoe vs. self-selected walking shoe vs. barefoot
 - Group B: mobility shoe vs. control stability shoe vs. barefoot
- **Outcome**: peak KAM and KAM impulse
- **Follow-up time**: immediate
- **Findings**:
 - Group A - the specialized mobility shoe reduced KAM by 8% when comparing with self-selected walking shoe
 - Group B - the specialized mobility shoe reduced KAM by 12% when comparing with control stability shoe
 - Long-term disease modifying effect of this novel mobility shoe is unknown (Shakoor et al., 2008)
Footwear – variable stiffness shoe

- **Design**: participant-blinded RCT
- **Participants**: medial knee OA (n=32 in treatment, n=23 in control)
- **Intervention**: variable-stiffness sole worn daily

- **Controls**: shoe with constant stiffness on both sides
- **Outcome**: within-day peak KAM, WOMAC pain, function
- **Follow-up time**: one year
- **Findings**: both groups improved in pain and function when compared to personal shoe, 4.7% ↓ of KAM in variable stiffness shoe, 3% ↑ in control shoes (Erhart-Hedik et al., 2011)

Footwear – APOS shoe

- **Design**: single group within subject comparison
- **Participants**: women with medial knee OA (n=25)
- **Intervention**: as a biomechanical treatment device, wearing APOS shoe to change center of pressure location and provide perturbation during walking
- **Outcome**: barefoot peak KAM and KAM impulse, WOMAC pain, function
- **Follow-up time**: 3 and 9 months
- **Findings**: improved in pain and function at both 3 and 9 months - 13%, 8.4%, and 12.7% reduction in KAM impulse, 1st peak KAM and 2nd peak KAM (Holm et al., 2011)

Footwear - Caveat

- The role of footwear in management of knee OA is complex; more evidence and RCT with structural outcomes are needed for sound recommendations
- Flat-heel shoes may be worn in preference to > 1.5 inch heels
- Flexible/mobility shoes may provide mobility needed to mimic barefoot walking and reduce knee load
- Variable-stiffness sole with stiffer lateral side may help to reduce medial knee load and improve symptoms
- Patients with pathologies associated with pronatory foot type may not benefit from flexible/mobile shoes and lateral wedge

Summary

- Variability in individual neuro-mechanical characteristics and adaptation
 - classify into different sub-groups
 - responders vs. non-responders
- Each intervention approach may have its pros and cons
 - single vs. combination intervention approach
- Limited RCT on these approaches
 - need for RCT with structural outcomes