Denosumab Decreases Cortical Porosity in Postmenopausal Women With Low Bone Mineral Density

C Libanati, SK Boyd, KK Nishiyama, RM Zebaze, DA Hanley, JR Zanchetta, T Thomas, CE Bogado, M Austin, E Seeman

1Amgen Inc., Thousand Oaks, CA, United States
2University of Calgary, Calgary, Alberta, Canada
3University of Melbourne, Melbourne, Australia
4Instituto de Investigaciones Metabólicas, Buenos Aires, Argentina
5INSERM U1059 and University Hospital, Saint-Étienne, France
6INSERM U831 and Université de Lyon, Lyon, France
7Austin and Repatriation Medical Centre, University of Melbourne, Melbourne, Australia

ACR; Chicago, IL, USA; November 7, 2011

Disclosures

C Libanati: Amgen employee and shareholder
SK Boyd: Research grants and/or consulting fees from Amgen, Merck, and Servier
KK Nishiyama: None
RM Zebaze: Grant and/or research support from Amgen; speaker fees from Servier
DA Hanley: Research grants and/or consulting fees from Amgen, Eli Lilly, Merck, Novartis, NPS Pharmaceuticals, Pfizer, and Warner Chilcott; speakers bureau for Amgen, Eli Lilly, Merck, and Novartis
JR Zanchetta: Consulting fees or other remuneration from Amgen, Eli Lilly, GSK, Merck, Pfizer, and Servier
T Thomas: Grant / research support from Amgen, Chugai, Eli Lilly, Pfizer, Roche, and Warner Chilcott; speaker fees from Amgen, Daiichi-Sankyo, and Eli Lilly; consultant fees from BMS, Daiichi-Sankyo, Eli Lilly, GSK, Merck, Novartis, Roche, Servier, and Warner Chilcott
S Boutroy: None
CE Bogado: Advisory board member for GSK
M Austin: Amgen employee and shareholder
E Seeman: Speaker and advisory board member for Amgen, Eli Lilly, MSD, Novartis, Sanofi Aventis, and Servier

Bone Remodeling & Balance With Aging

Remodeling rate Resorption by BMU Formation by BMU

Serum Calcium and Parathyroid Hormone

Albumin-adjusted Serum Calcium

Parathyroid Hormone

Hypothesis

In the setting of a rapid and marked decrease in bone resorption at tissue and cellular levels produced by denosumab

(i) The increase in PTH is associated with a decrease in cortical porosity
(ii) These associations do not occur with alendronate
Study Design
- Multi-center, RDBPC, pilot phase 2, 1-year study
- Ambulatory postmenopausal women, age 50 to 70 yrs, no fractures
- Lumbar spine or total hip T-scores between −2.0 and −3.0
- Randomization 1:1:1 (calcium and vitamin D for all)
- Endpoints assessed using high resolution HR-pQCT (Scanco)

Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Placebo (N = 82)</th>
<th>Alendronate 70 mg QW (N = 82)</th>
<th>Denosumab 60 mg Q6M (N = 83)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)*</td>
<td>60.8 (5.2)</td>
<td>60.7 (5.2)</td>
<td>60.3 (5.9)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)*</td>
<td>26.9 (5.0)</td>
<td>26.4 (4.4)</td>
<td>27.2 (4.3)</td>
</tr>
<tr>
<td>Lumbar spine BMD T-score*</td>
<td>−2.4 (0.3)</td>
<td>−2.5 (0.3)</td>
<td>−2.4 (0.4)</td>
</tr>
<tr>
<td>Total hip BMD T-score*</td>
<td>−1.1 (0.7)</td>
<td>−1.4 (0.7)</td>
<td>−1.4 (0.8)</td>
</tr>
<tr>
<td>Years post menopause*</td>
<td>12.8 (6.2)</td>
<td>13.1 (8.0)</td>
<td>13.6 (7.6)</td>
</tr>
<tr>
<td>Completed study, n (%)</td>
<td>74 (90)</td>
<td>69 (84)</td>
<td>74 (89)</td>
</tr>
<tr>
<td>Discontinued study, n (%)</td>
<td>8 (10)</td>
<td>13 (16)</td>
<td>9 (11)</td>
</tr>
</tbody>
</table>

* mean (SD)

Porosity

- % Cortical Porosity
- Rib 6 m
- Rib 12 m
- Vehicle
- ALN
- DMAb
- Transition study

Cortical Porosity at the Distal Radius

- % Change From Baseline
- Month 12

Cortical Porosity at the Distal Radius

- % Change From Baseline
- Month 12

PTH, CTX, and P1NP

- % Change From Baseline
- Month

Seeman et al. *JBMR*. 2010;25:1886

Adapted from Ominsky et al. *JBMR*. 2008;23(S1):S61

Data are least squares means with 95% CIs

Data are means with 95% CIs
Seeman et al. JBMR 2010;25:1886 and 179 data on file

Seeman et al. JBMR. 2010;25:1886 and 179 data on file
Summary

- Denosumab led to BMD gains at the radius compared with baseline, placebo, and alendronate.

- Both alendronate & denosumab produced a transitory increase in PTH.
 - the increase was larger with denosumab.
 - for denosumab the increase occurred after each 6-monthly dose.

- Cortical porosity at 12 months:
 - increased with placebo (+5.2%)
 - increased less with alendronate (+2.9%)
 - decreased with denosumab (−3.0%)

- In the placebo and alendronate groups, increasing PTH was associated with an increase in cortical porosity, whereas in the denosumab group, increasing PTH was associated with a reduction in cortical porosity.

Limitations

Porosity is likely to be under-estimated because the automated segmentation method:

1. does not detect low-density cortex
2. does not detect porosity < ~82 µm
3. does not assess the transition zone (with its porosity)

Inferences

Denosumab had a positive impact on the cortical compartment and partially reversed micro-architectural deterioration:

(i) directly, by rapidly and markedly reducing remodeling intensity and osteoclast activity,

(ii) perhaps indirectly, by a PTH-dependent effect on BMU level bone formation in the setting of full suppression of osteoclast activity.