Endothelial Cell Injury and Activation Promote the Binding of Anti-Phospholipid Antibodies and Thrombus Formation

Patrick Laplante, PhD
Division of Rheumatology, Department of Medicine, Research Institute of the McGill University Health Centre, McGill University

Disclosure
I have no relevant financial relationships to disclose

Evidence Based Medicine

Review on aPL and APS: Levine JS, Ware Branch D and Rauch J. The Antiphospholipid Syndrome. NEJM 2002; 346: 752-763.

Introduction

Anti-Phospholipid Syndrome (APS):
- An autoimmune disease characterized by:
 - the presence of anti-phospholipid antibodies (aPL)
 - the occurrence of clinical events
 - pregnancy morbidity
 - thrombosis

- Some patients with aPL develop clinical events, while others do not

What are the mechanisms responsible for causing aPL-related thrombosis?

Hypothesis

aPL and innate immune activation (through TLR) are both required to produce thrombosis in APS

In Vitro Methods

aPL production by immunization of rabbits with murine β2-glycoprotein I (β2GPI) and complete Freund’s adjuvant
- β2GPI and cardiolipin (CL) binding studies (ELISA)

Endothelial cell (EC) activation
- two cell lines: HUVEC and EOMA
- stimulation with LPS (ligand for toll-like receptor 4 (TLR4))
- measurement of activation (cell-based ELISA)
 - E-selectin
 - P-selectin
 - von Willebrand factor (vWF)

Binding of aPL to activated ECs
- LPS stimulation of ECs + aPL Binding
Results: aPL

Characterization of aPL
- Produced in rabbits immunized with murine \(b_2 \)GPI
- Binding of aPL to murine (m) and human (h) \(b_2 \)GPI and CL

Results: EC activation

TLR4 stimulation induces EC activation
- E-selectin, vWF and P-selectin expression

Results: aPL binding to activated ECs

aPL bind to activated ECs in a dose-dependent manner
- TLR4 activation with LPS

In Vivo Thrombosis Model

Ferric chloride (FeCl\(_3\))-induced carotid artery injury

1. Expose carotid
2. Blood flow (BF) sensor
3. Place carotid in sensor
4. Stabilization of BF after manipulation (10min)
5. FeCl\(_3\) application for 3 minutes
6. FeCl\(_3\) removed - acquiring BF data (15 min)

Results: In Vivo

Thrombus formation is significantly faster in aPL-treated mice

Vessel occlusion is significantly faster in aPL-treated mice

*\(p<0.05 \) vs Control IgG and Unstimulated Cells
Results: In Vivo

Uninjured contralateral carotid arteries: increased expression of P-selectin and vWF

Conclusions

Endothelial cell injury and activation promote the binding of aPL and thrombus formation

In Vitro

1. TLR4 stimulation → EC activation
 - ↑ E-selectin, P-selectin and vWF expression
 - ↑ aPL binding

In Vivo

Endothelial injury/activation + aPL = THROMBOSIS
- Thrombus formation and vessel occlusion are faster in aPL-treated mice
- Increased expression of P-selectin and vWF in uninjured contralateral carotid arteries

Acknowledgements

My Lab

Collaborators

- Dr. Joyce Rauch
- Rebecca Subang
- David Salem
- Dr. Mélanie Dieudé

Dr. Jean-François Théorêt

Dr. Yahye Merhi

Dr. Eric Thoîrn

Dr. Jean-François Tanguay

Financial Support:

- CIHR
- IRSC
- The Arthritis Society

Perspectives

A story to complete...

In Vitro

1. Other TLRs?
2. Cytokine secretion?
3. Tissue factor (TF) expression on ECs?

In Vivo

1. Carotid artery characterization
 - Injured: thrombus size, monocyte infiltration
 - Uninjured: confirmation of EC activation
 - E-selectin, vWF, p-selectin, TF
2. TLR knock-out mice

In Vivo Thrombosis Model

- Measurements:
 - Thrombus formation (time and size)
 - Histology of the endothelium
Results: In Vivo

Uninjured contralateral carotid arteries:
- increased expression of P-selectin and vWF

- IgG
- aPL

- P-selectin
- Isotype ctl
- vWF
- Isotype ctl