Abnormal Concentric Ventricular Remodeling in Rheumatoid Arthritis

John M. Davis, III, Veronique L. Roger, Cynthia S. Crowson, Terry M. Therneau, Eric L. Matteson, and Sherine E. Gabriel

From the Division of Rheumatology, the Division of Cardiovascular Diseases, and the Department of Health Sciences Research Mayo Clinic, Rochester, Minnesota, USA

Disclosure

We have no financial or other relationship to disclose.

Background

• Heart failure (HF) is an important complication of rheumatoid arthritis (RA)
 • Significantly increased incidence in RA
 • Unexplained by traditional risk factors
 • HF-related mortality is high in RA
 • Preserved systolic function
 • LV diastolic dysfunction

Rationale

• Distinct pathogenesis of HF complicating RA?
 • Inflammatory immune mechanisms
 • Structural changes in the myocardium
• Analysis of left ventricular geometry elucidates patterns of remodeling.
 • New mechanistic insights
 • Prognostic & therapeutic implications

Purpose

To compare left ventricular geometry between patients with RA and subjects without any history of arthritis from the same community.
Methods

- **Design:**
 - Cross-sectional study
 - Population-based cohorts
 - RA vs. non-RA

- **Study population:**
 - Olmsted County, MN residents
 - Age ≥ 50 years
 - No history of clinical heart failure

- **Data collection:**
 - BMI, CV risk factors, RA data
 - Lab: CRP, RF, ACPA
 - 2D/Doppler echocardiography

Methods

Key Parameters of LV Geometry

- Posterior wall thickness
- Left ventricle internal diameter

Relative wall thickness (RWT)

- Normal
- Eccentric hypertrophy
- Concentric remodeling

LV mass index (LVM)

- Normalized to body surface area

Classification of LV Geometry

<table>
<thead>
<tr>
<th>LV mass index</th>
<th>LV mass index</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤95 (female)</td>
<td>>95 (female)</td>
</tr>
<tr>
<td>≤115 (male)</td>
<td>>115 (male)</td>
</tr>
</tbody>
</table>

- RWT ≤0.42
- RWT >0.42

- Normal
- Eccentric hypertrophy
- Concentric remodeling

Methods

• Statistical analysis:
 • Contingency tables
 • Chi square tests
 • Logistic regression models
 • Model 1: fit all adjustors
 • Model 2: assess variable of interest holding the adjustors constant
 • Reduce overfitting bias

Results

Characteristics of the RA Cohort (N = 210)

<table>
<thead>
<tr>
<th>Disease duration, yrs</th>
<th>10.1 ± 7.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatoid factor or ACPA positive</td>
<td>69%</td>
</tr>
<tr>
<td>Pain, 100 mm VAS (0 – 100)</td>
<td>29.7 ± 24.1</td>
</tr>
<tr>
<td>HAQ disability index (0 – 3)</td>
<td>0.6 ± 0.6</td>
</tr>
<tr>
<td>C-reactive protein, mg/L (<3.0 – 8.0)</td>
<td>4.4 ± 6.8</td>
</tr>
<tr>
<td>Methotrexate use</td>
<td>56%</td>
</tr>
<tr>
<td>Biologic use</td>
<td>14%</td>
</tr>
<tr>
<td>Prednisone use</td>
<td>29%</td>
</tr>
</tbody>
</table>

Results

Comparison of RA and non-RA subjects

<table>
<thead>
<tr>
<th>Variable</th>
<th>RA (N = 210)</th>
<th>Non-RA (N = 1446)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yrs</td>
<td>65.1 ± 9.9</td>
<td>65.0 ± 9.4</td>
<td>0.84</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>28.7 ± 5.9</td>
<td>28.2 ± 5.4</td>
<td>0.16</td>
</tr>
<tr>
<td>SBP, mm Hg</td>
<td>132 ± 18</td>
<td>125 ± 19</td>
<td><0.001</td>
</tr>
<tr>
<td>DBP, mm Hg</td>
<td>71 ± 9</td>
<td>68 ± 10</td>
<td><0.001</td>
</tr>
<tr>
<td>LV mass index, g/m²</td>
<td>85 ± 16</td>
<td>91 ± 22</td>
<td><0.001</td>
</tr>
<tr>
<td>RWT, cm</td>
<td>0.43 ± 0.07</td>
<td>0.39 ± 0.08</td>
<td><0.001</td>
</tr>
<tr>
<td>EF, %</td>
<td>62 ± 7</td>
<td>65 ± 7</td>
<td><0.001</td>
</tr>
</tbody>
</table>

All values are sex-adjusted.

Results

Comparison of RA and non-RA subjects

<table>
<thead>
<tr>
<th>Variable</th>
<th>RA (N = 210)</th>
<th>Non-RA (N = 1446)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yrs</td>
<td>65.1 ± 9.9</td>
<td>65.0 ± 9.4</td>
<td>0.84</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>28.7 ± 5.9</td>
<td>28.2 ± 5.4</td>
<td>0.16</td>
</tr>
<tr>
<td>SBP, mm Hg</td>
<td>132 ± 18</td>
<td>125 ± 19</td>
<td><0.001</td>
</tr>
<tr>
<td>DBP, mm Hg</td>
<td>71 ± 9</td>
<td>68 ± 10</td>
<td><0.001</td>
</tr>
<tr>
<td>LV mass index, g/m²</td>
<td>85 ± 16</td>
<td>91 ± 22</td>
<td><0.001</td>
</tr>
<tr>
<td>RWT, cm</td>
<td>0.43 ± 0.07</td>
<td>0.39 ± 0.08</td>
<td><0.001</td>
</tr>
<tr>
<td>EF, %</td>
<td>62 ± 7</td>
<td>65 ± 7</td>
<td><0.001</td>
</tr>
</tbody>
</table>

All values are sex-adjusted.
Results
Abnormal LV geometry in RA and non-RA

Adjusted OR = 1.3 (95% CI: 0.9, 1.8), p=0.13

Results
Concentric remodeling in RA and non-RA

*Adjusted OR = 3.8 (95% CI: 2.6 to 5.6) p<0.001

Results
Concentric remodeling in RA and non-RA
Patients with abnormal geometry

*Adjusted OR = 6.7 (95% CI: 3.8 to 11.9), p<0.001

Results
Predictors of Abnormal LV Geometry in RA

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds Ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA duration</td>
<td>0.99</td>
<td>0.94, 1.04</td>
</tr>
<tr>
<td>RF+</td>
<td>1.37</td>
<td>0.72, 2.61</td>
</tr>
<tr>
<td>ACPA+</td>
<td>1.50</td>
<td>0.79, 2.85</td>
</tr>
<tr>
<td>CRP >8 mg/L</td>
<td>2.30</td>
<td>0.88, 6.02*</td>
</tr>
<tr>
<td>Pain score</td>
<td>1.43</td>
<td>0.91, 2.26</td>
</tr>
<tr>
<td>HAQ disability index</td>
<td>1.76</td>
<td>0.98, 3.12†</td>
</tr>
<tr>
<td>MTX</td>
<td>2.22</td>
<td>1.14, 4.34‡</td>
</tr>
<tr>
<td>Anti-TNF</td>
<td>1.00</td>
<td>0.99, 1.00</td>
</tr>
<tr>
<td>Prednisone</td>
<td>0.94</td>
<td>0.47, 1.88</td>
</tr>
</tbody>
</table>

*P = 0.088. †P = 0.058. ‡P = 0.019.
Odds ratios are adjusted for all covariates.

Summary
- RA is associated with abnormal LV geometry
 - Concentric remodeling, in particular
- Significant after adjustment for CV risk factors
- Association with markers of RA severity

Possible Implications
- Pathogenesis
 - RA-associated remodeling suggests a distinct pathogenesis of heart failure
 - Concentric remodeling is related to aging, obesity, and metabolic syndrome1-3
 - New hypotheses?
- Clinical management
- Screening for ventricular remodeling?
- Different approach to prevention of HF?

Conclusions

• RA is associated with concentric remodeling

• Further research is necessary to understand:
 • Biological mechanisms involved
 • Impact on diagnosis and treatment
 • Impact on cardiovascular outcomes

Acknowledgments

• Our patients!
• Mayo Rheumatology clinicians
• Research study team:

 Nurse Abstractors
 Margaret R. Donohue, RN
 Julie C. Gross, RN
 Denise M. Herman, RN
 Cynthia J. Hauke, RN
 Deborah C. Olson, RN
 Lynn A. Stevens, RN
 Dona K. Viera, RN

 Study Coordinators
 Jeaneen J. Alcorn
 Konnie B. Bicknese
 Penelope Davidson
 Cynthia J. Stoppel

 Admin Assistants
 Donette M. Adler
 Darcy L. Jacobson
 Sherry L. Kallies
 Melissa Schuh

 Immune Signatures
 John M. Davis III, MD
 John J. Doppman, MD
 Larry L. Pease, MD
 Michael A. Pletnikov, BS
 Peter J. Wettstein, PhD
 Minzhi Zhang, BS

 CV / Echo
 Daniel D. Borgeson, MD
 Joanne C. Schaberg, RDCS
 Myriam F. Green, RDCS
 Mary J. Starnes, RN
 Barry J. Karon, MD
 Barry K. Mendrick, RDCS
 Richard J. Rodeheffer, MD
 Veronique L. Roger, MD, MSc
 Mary J. Wenzel, RDCS

 RA Epidemiology
 Sherine E. Gabriel, MD, MSc
 Hilal Maradit Kremers, MD, MSc
 Eric L. Matteson, MD, MSc

 Biostatistics
 Karla V. Ballman, PhD
 Cynthia S. Crowson, MS
 Patrick D. FitzGibbon, BS
 Abigail B. Green, BS
 Megan S. Reinalda, BS
 Terry M. Therneau, PhD

 Fellows
 A. Kirstin Bacani, MD
 Angel Gonzalez, MD
 Kimberly P. Liang, MD
 Elena Myasoedova, MD, PhD
 Paulo J. Mota, MD