TNF-inhibitors Slow Radiographic Progression in Ankylosing Spondylitis

Nigil Haroon, Robert D. Inman, Thomas J. Learch, Michael H. Weisman, Michael M. Ward, John D. Reveille and Lianne S. Gensler

Disclosures

• The work included was not supported by any industry partners
• NH is supported by the Arthritis Society, Canada and the CIBC Young Investigator Award (Arthritis Research Foundation, Toronto)
• LSG is supported by Rosalind Russell Medical Research Center for Arthritis, Spondylitis Association of America (Young Investigator award) and NIH/NIAMS P01 AR053915-06A1
• Disclosures for NH and RDI include consultant/honoraria from Abbott Immunology, Canada, Janssen Rheumatology, Canada and Amgen/Pfizer/Wyeth Canada
• LSG has been a consultant for Abbott USA & UCB
• There are no disclosures for TJL, MHW, MMW and JDR
• The project described was supported by the National Center for Research Resources, Grant UL1RR033176, and is now at the National Center for Advancing Translational Sciences, Grant UL1TR000124
• The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH

EBM

Relentless Radiographic Progression

Link between spinal inflammation and new bone formation in AS...?
Continuous NSAID use retards radiographic progression

TNFi Rx → ↓MRI-defined inflammation (STIR)

Do TNF-inhibitors affect radiographic progression?

- Long duration of FU required
- Unethical to do placebo controlled trials for long periods
- Comparison with historic cohorts not ideal
- Stage of disease and duration of AS might be significant
- Confounders like smoking have to be adjusted
- Baseline damage is a strong predictor and should be corrected for in analysis
- Large numbers are needed to show a significant effect after correcting for other relevant factors

Study Centers
Methods

- Patients followed prospectively across all 5 centers
- Standardized protocol with X-rays done every 2 years
- Patients with AS (Mod. New York criteria)
 - At least two sets of spinal radiographs for mSASSS
 - Not having advanced bamboo spine at baseline
- Clinical evaluation and laboratory assessment: at least once a year
- Disease activity at baseline
 - BASDAI
 - ESR
 - CRP
- Variables studied
 - Baseline mSASSS
 - Baseline age
 - Age of onset of axial symptoms
 - Duration of disease

mSASSS Scoring

- 3 Readers
- Blinded to treatment
- Status score
 - ICC: 0.966 (95% C.I. 0.947 – 0.978)
 - p < 1 x 10^-35
 - Cronbach's α: 0.982
- Change score
 - ICC: 0.528 (95% C.I. 0.264 – 0.720)
 - p = 0.0002
 - Cronbach's α: 0.697.

Cohort

- N: 334 Patients
- Mean Age: 40.7 ± 13.8 years
- Mean disease duration: 16.4 ± 12.8 years
- Mean age of onset: 24.2 ± 9.9 years

- Males: 77%
- HLA-B27: 83.4%

Males Tend to Progress Faster

- Mean baseline CRP: 1.48 ± 1.96 mg/L
- Mean ESR: 17.7 ± 19.5 mm/hour
- Mean baseline mSASSS score: 9.6 ± 14.5
- Progressors: 102
 - Increase in 2 mSASSS units in 2 years

No Effect of HLA-B27 on Progression

- 30.5% Progressors
- 69.5% Non-Progressors

- Negative
- Positive
Effect of Smoking on Progression

- Smoking: Yes vs. No
- Smoking Pack Years: 0-10 vs. >10

Effect of Baseline mSASSS on Progression

- mSASSS = 0
- mSASSS = 1-10
- mSASSS > 10

Effect of Baseline Inflammation on Radiographic Progression

- ESR < 20
- ESR = 20-40
- ESR > 40

TNF-inhibitor Naïve and Treated Patients

<table>
<thead>
<tr>
<th>Variable</th>
<th>TNF-inhibitor Naïve (N=133)</th>
<th>TNF-inhibitor Treated (N=201)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>42.50±14.6</td>
<td>39.43±13.2</td>
</tr>
<tr>
<td>Male (%)</td>
<td>67.7</td>
<td>82.6*</td>
</tr>
<tr>
<td>HLA-B27 (%)</td>
<td>84.96</td>
<td>82.41</td>
</tr>
<tr>
<td>Disease Duration (yrs)</td>
<td>16.38±14.4</td>
<td>16.47±11.8</td>
</tr>
<tr>
<td>Baseline mSASSS</td>
<td>8.20±13.8</td>
<td>10.60±14.9</td>
</tr>
<tr>
<td>Smoking (pack-yrs)</td>
<td>3.34±8.3</td>
<td>3.87±8.0</td>
</tr>
<tr>
<td>ESR (baseline)</td>
<td>17.02±17.3</td>
<td>18.11±20.9</td>
</tr>
<tr>
<td>CRP (baseline)</td>
<td>1.69±1.9</td>
<td>1.33±2.0</td>
</tr>
<tr>
<td>BASDAI (baseline)</td>
<td>3.61±2.4</td>
<td>4.64±2.5*</td>
</tr>
</tbody>
</table>

* p<0.002

Multivariate Analysis: Predicting Progressors

<table>
<thead>
<tr>
<th>Variables</th>
<th>Pre-Matching</th>
<th>OR</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline mSASSS</td>
<td></td>
<td>1.061</td>
<td>1.040-1.083</td>
<td>1 x 10^-17</td>
</tr>
<tr>
<td>Baseline ESR</td>
<td></td>
<td>1.025</td>
<td>1.010-1.039</td>
<td>0.001</td>
</tr>
<tr>
<td>Smoking (Pack Years)</td>
<td></td>
<td>1.051</td>
<td>1.014-1.091</td>
<td>0.007</td>
</tr>
<tr>
<td>TNF-inhibitor use (Yes/No)</td>
<td></td>
<td>0.498</td>
<td>0.274-0.905</td>
<td>0.022</td>
</tr>
</tbody>
</table>

Early use of TNF-inhibitor use reduces rate of radiographic progression

OR: 0.36; CI:0.15-0.91; p=0.03

Mean Rate of mSASSS

- N=39
- N=42
- N=120

Delay in Starting TNF-Inhibitor (Years)
Longer Use of TNF-Inhibitors Decreases Radiographic Progression

Best results when TNF-inhibitors started within 10 years of disease onset

Conclusions

- First study to show disease modifying effect of TNF-inhibitors in AS
- Early use of TNFi is most effective
- Sustained treatment reduces progression
- Smoking and baseline inflammation are risks
- Baseline damage is the strongest predictor of future radiographic progression in AS.

Acknowledgements

- Database Management
 - Grace Yoon: UCSF
 - Adele Carty, Renise Ayearst and Ammepa Anton: UHN, Univ of Toronto
 - Vera Wirawan and Laura Diekman: UTHS
 - Lorie Guthrie: NIH
 - Kelly Tillery and Tessa Scaffide: CS

American College of Rheumatology, Image Bank (W99-07-0014 - adapted)