Integrating Concepts of Behavioral Change and Technology to Promote Health in Persons with Arthritis

Dr Maura Iversen
Professor and Chair, Department of Physical Therapy, Northeastern University
Senior Lecturer, Harvard Medical School
Clinical Epidemiologist and Behavioral Scientist, Division of Rheumatology, Immunology & Allergy, Brigham & Women’s Hospital, Boston, MA USA
Adjunct Foreign Professor, Karolinska Institute, Stockholm, Sweden

Disclosures
- Consultant for Novartis Pharmaceuticals Inc
- Funded by Arthritis Foundation and National Institutes of Health
- Funded by Pfizer
- No Conflicts of Interest

Objectives
- Review array of behavioral interventions to promote adherence to treatments and well-being in persons with arthritis
- Describe the application of various technologies to promote behavior change
- Synthesize the evidence for technological applications, highlight strengths and weaknesses
- Describe new areas for applications of technology

Behavioral Interventions
- Interventions designed to affect the actions that individuals take with regard to their health.
- With behavioral interventions, in contrast, patient behavior is the key and the goal is to change it.

Behaviour Change Models and Interventions

<table>
<thead>
<tr>
<th>Behavioral Interventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive Behavioral Therapy (CBT)</td>
<td>Based on Cognitive Model of Emotional Response - concept that our thoughts cause our feelings and behaviors, not external things</td>
</tr>
<tr>
<td>Motivational Interviewing</td>
<td>Counseling to facilitate and engage intrinsic motivation within client to change behavior</td>
</tr>
<tr>
<td>Behavior Reinforcement</td>
<td>Stimulus-Response, Reinforcement of desirable behaviors (e Weight Watchers)</td>
</tr>
<tr>
<td>Health Belief Model</td>
<td>Patient beliefs drive change</td>
</tr>
<tr>
<td>Mindfulness</td>
<td>Meditation-based; focus attention/ awareness</td>
</tr>
<tr>
<td>Transtheoretical Model</td>
<td>Conceptualizes intentional behavior change – series of stages with strategies</td>
</tr>
<tr>
<td>Theory of Planned Behavior</td>
<td>Links beliefs, attitudes and behavioral intention</td>
</tr>
<tr>
<td>Social Cognitive Theory</td>
<td>Knowledge acquisition directly related to observing others within social contexts</td>
</tr>
</tbody>
</table>

Select References
Targets for Behavioral Interventions

- National Interventions - Public Policy
 - Environment
 - Patient

Patient Health Beliefs
- Barriers
- Facilitators

Targets for Behavioral Interventions

- Environment
 - Safety
 - Social Norms, Social Beliefs
 - Access

National Interventions - Public Policy
- Smoking bans
- "Sin" taxes
- Medication Access/Insurance
- Structural changes in community

External Influences on Technology and Health

Global Advances in Medical Care
- Shifts in Health Care Provider and Patient Demographics
- Economic Factors affecting health care delivery
- Health Care Policy

Increased Disability
- Technology Applications in Health Care
- Increased Technology and Access to Technology

Technology Applications for Health

- mHealth
 - Text messaging
 - Video messaging
 - Voice calling
 - Internet Connectivity
 - Mobile Monitoring
 - Accelerometers
 - Crowd Sourcing
Technology Applications for Health

- Active Assistant Technology
- Telemedicine
- Gaming
- Virtual Reality

Virtual Reality and Health

- VR technology creates controllable, interactive, multisensory environments allowing measurement and motivation of human behavior
- Nonimmersive VR - uses modern computer and console games systems. Format - 3D graphic environment on flat screen monitor, projection system or TV within which the user navigates and interacts.

Virtual Reality and Health

- "Immersion VR - combines computers, head-mounted displays, body tracking sensors, specialized interface devices and real-time graphics to immerse subjects in a computer-generated simulated world that changes in a natural way with head and body motion".

Applications of Virtual Reality

- Medication adherence
- Patient Counseling
- Rehabilitation
- Physical Activity

Design Strategies for Technologically-Based Behavioral Interventions

- Contextual Inquiry
- Value Specification
- Design prototypes
- Operationalism
- Summative Evaluation

Online Prevention Programs to Promote Healthy Behaviors

- Internet-based behavior change – diet, physical activity, alcohol use, smoking, and condom use.
- 41 eligible reviews – mostly weight-related behaviors, eg physical activity and diet
- Effects are small, variable, not sustainable.
- Users - female, well educated, white living in high-income countries.
- Low use of the interventions

Lange et al. Disability & Rehabilitation, 2012

Van Velsen et al, JMIR Res Protoc 2013;2(1):e21

Kohl et al, J Med Internet Res 2013;15(7):e146
Mobile Texting and Alignment with Health Behavior Change

- Texting compatible with
 - Theory of Planned Behavior (Ajzen & Fishbein)
 - Health Belief Model (Becker)
- Provides cues to action, social support and reinforcement of behaviors

Text Messaging for Health Promotion and Disease Prevention

- Systematic Review
 - Text messaging primary Rx
 - RCTs and CCTs - 17 articles (12 studies; 5 prevention 7 disease management)
 - Samples: Most with persons with DM, physical activity and weight loss in general
 - RxS range from 3 to 12 months
 - Message frequency variable
 - 8/9 well powered studies – evidence for success with texting to promote + health behavior

Pro and Cons of Mobile Texting for Health Behavior

- Pros
 - Widely available
 - Inexpensive
 - Instant
 - Does not require tech expertise
 - Applicable to many health conditions
 - Asynchronous = convenient
 - Phone off, messages delivered when on

- Cons
 - Potential to marginalize groups
 - Low literacy
 - Access issues
 - Intervention interrupted if phone lost or stolen

Physical Activity in Adults with Rheumatoid Arthritis

- Design/Sample: Cohort: 1,108 adults with RA followed for 4 years
- RA disease activity contributed little to PA, adjusting for other factors.
- Despite low disease activity, some patients did not engage in PA
- Factors associated with greater PA included female gender, greater social networks, modest alcohol intake and greater education
- Patients with RA engage in low levels of PA even as disease activity subsides.

Technology to Promote and Document Physical Activity (PA)

- Web-based
- Accelerometers
- Computer games (Wii Fit)
 - Non-immersion
 - Immersion
- Customized video-based exercise programs via TV, computer or smart phone (Real Solutions)

Web-based Interventions To Promote Physical Activity

<table>
<thead>
<tr>
<th>Author (Yr)</th>
<th>Design/ Sample</th>
<th>Intervention</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lorig, 2008</td>
<td>RCT of 855 adults with RA, OA or FM</td>
<td>Internet arthritis self-management (IASM)</td>
<td>1 year, IASM significantly improved in 4/6 health status measures and self-efficacy. No significant differences in health behaviors.</td>
</tr>
<tr>
<td>Bossen, 2013</td>
<td>Pre-post design of 20 adults with KGA and KDA (50-85yrs)</td>
<td>Join2move web-based program for 12 wks - uses behavior graded activity theory</td>
<td>Change in pain at 6 wks gone at 12 wks, convenient but issues with interface.</td>
</tr>
<tr>
<td>Krein, 2013</td>
<td>RCT of 229 Vets with chronic LBP</td>
<td>Join2move web-based program for 12 wks - uses behavior graded activity theory</td>
<td>Clinically significant increase (2 pts on Roland Disability) seen at 6 not at 12 months.</td>
</tr>
</tbody>
</table>
Factors Influencing Success With Web-based PA Program Use in OA

- **Facilitators**
 - Trust in the program
 - Reliability, functionality of the intervention
 - Social support from family or friends
 - Research team and commitment

- **Barriers**
 - Age (older)
 - Greater co-morbidities
 - Lack of personal guidance
 - Insufficient motivation
 - Physical problems
 - Low mood
 - Absence of human involvement

Gaming Interventions To Promote Physical Activity

<table>
<thead>
<tr>
<th>Author (Yr)</th>
<th>Design and Sample</th>
<th>Intervention</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitz, 2010</td>
<td>Pre-Post design: 10 women (30-50 yrs)</td>
<td>WiiFit 30 min, 2x/wk for 10 weeks</td>
<td>Unilateral stance and UE strength significantly increased</td>
</tr>
<tr>
<td>Chang, 2011</td>
<td>ABAB design: 2 young adults – 1 with CP and 1 with acquired muscle atrophy</td>
<td>Kinect-based system with video and audio feedback, 12 days on-5 days off</td>
<td>Increased motivation for exercise and improved exercise performance</td>
</tr>
<tr>
<td>Owen, 2011</td>
<td>Cross-over design: 21 subjects from 8 families</td>
<td>WiiFit used in home for 3 months</td>
<td>Among children sign. increase in VO2; no significant changes in adults; 82% decline in use after 1st 6 weeks to 2nd 6 weeks</td>
</tr>
<tr>
<td>Yuan, 2011</td>
<td>Pre-Post design: 15 AA women with SLE</td>
<td>WiiFit 30 min, 3 days/wk for 10 weeks</td>
<td>10 pt change in Fatigue Severity Scale (0.002) and 2 kg weight loss</td>
</tr>
</tbody>
</table>

Associations Between Gaming System Balance and Clinical Balance Measures

- 34 community dwelling adults (25 F, 9 m)
 - mean age 67 yrs

- **Measures**
 - Balance – Useful Field of View (UFOV), Activiti specific Balance Confidence
 - Functional-Senior Fitness Test, grip dynamometry, 30s chair stand, Timed Up and Go, 6-min walk, etc

- **Results**
 - Low correlation (r=0.3) between Wii Basic Balance and UFOV

Reed-Jones, Gait & Posture, 2012

What is the Metabolic Value (METs) of Commercial Games?

- Assessed Energy Expenditure (EE) of 12 adults during gaming
 - Rx: WiiFit (golf, bowling, tennis, baseball, boxing) and WiiFit Plus (63 activities eg yoga)
 - Methods: EE assessed in open-circuit indirect metabolic chamber
 - Results:
 - Activities ranged from 1.3 to 5.6 METs
 - 67% were light intensity (<3 METs)
 - 23% were moderate intensity (3-6 METs)

Miyachi, Med Sci Sports & Exercise, 2010

Addressing Access - Biosensor-based Video Game for Physically Disabled

- **Target**: Persons with Rheumatoid arthritis

- **Problem**:
 - Pain and synovitis- wrist/fingers
 - Poor lever arms
 - Weak prehension
 - High prevalence Carpal Tunnel

Designers:
 J Breugelmans, Y Lin, RR Mourant, MD Iversen
 Northeastern University

- Combines eye tracking device and data glove technology
 - Personalized – client’s ROM required and inputted into system as game controls.
 - Any small but intentional finger flexion triggers flexion sensor - same with thumb sensor
 - Wrist sensor placement requires 20 degree ROM
 - Game provides reinforcements to encourage play

http://www.youtube.com/watch?v=sr6ispd7UxeE
RPLAY – Aims & Challenges

- Social Cognitive Theory basis of Rx
 - Monitors clinical outcomes & merging data for feedback loop
 - Adaptation of KINECT system
 - Games calibrated to patient-specific needs
 - System gains intelligence with use
 - E-community built into gaming

Emotion Detection and Motion Feedback - RPLAY

- Use web camera
- The bottom preview window shows the real-time images.
- Every 1.5 seconds, the face is detected, shown in “Detected face” windows
- Classified into one emotion category shown by the cartoon

25 studies 1980-2011 (PubMed, CINHAL, Web of Science and Scopus) that examined usability/utility of affordable exergaming technology (exclusion- fully immersive VRs) in adults with systemic disabling conditions.

4 RCTs
Few comprehensive usability assessments
Common tech- Sony PlayStation EyeToy, Nintendo Wii
8 adverse events among 346 adults
Most subjects male and s/p stroke
No focus on behavioral theories

Virtual Reality & Rehabilitation

- Meta-analysis of 5 RCTs of VR-enhanced rehabilitation for patients s/p stroke
 - High-tech gadgets such 3-D goggles, robotic gloves, and motion-tracking video game systems
 - Moderate effect sizes (0.4-0.5) with 5-fold increase in motor strength compared to those who received conventional physical therapy

Dietary Interventions Using Technology
A Computer Support Program that Helps Clinicians Provide Patients with Metabolic Syndrome Tailored Counseling to Promote Weight Loss

Purpose: To test effect of a computerized support tool to enhance brief physician-delivered healthy lifestyle counseling to patients with increased metabolic risk factors during 2 usual care visits

Design/Sample: CCT with 263 Hispanic adults (mean age 50 yrs), BMI >=25 from 2 large health centers

Rx: 12 month computer-assisted program to set weight loss and PA goals which were reviewed at clinic visits at baseline and 6 months vs usual care

Results: 26.3% in Rx group vs 8.5% usual care lost >5% body weight. Significant reductions also seen in LDL (-14 vs -4 mg/dL)

Theoretical Basis and Components of mHealth Diets

- **Focus on Social Support**
 - Crowd sourcing
 - Cues to Action

- **Most successful**
 - Traffic Light Program

Traffic Light Approach

- **Rate these foods**
- **Click on the color!**

Traffic Light Program

- **Self-monitoring**
 - Diet: Crowdsourcing mobile program using pictures of meals and stoplight for rating
 - Location tracking: Tracking of time and location of eating events of red foods
- **Context-based prompting**
 - Diet: Prompting of when and where red foods are commonly consumed
 - Weight: Weekly weight (Withings scale)
 - Context: Traffic light prompting based on weight change

Magazine Ads Promoting Weight Management via Texting

![Sign Up Now!](image1)

The SELF Diet Tapper is the easiest way to get all of the great meals, moves and motivation you need to lose weight.
Technology for health: A qualitative study on barriers to using the iPad for diet change

- 4 focus groups of university students
- Students given iPads to download diet apps
- Questions about preferences regarding iPad functionality, app functionality, use of iPad
- Themes:
 - Lack of iPad practicality
 - Inconvenient mid-way technology
 - Internet access barriers
 - Smart-phone preference
 - Attitudes towards apps
 - Too intensive
 - Positive functions not specific to iPads
 - Lack of reliable/trustworthy information

Technology Interventions: Medication Adherence

- 4 focus groups of university students
- Students given iPads to download diet apps
- Questions about preferences regarding iPad functionality, app functionality, use of iPad
- Themes:
 - Lack of iPad practicality
 - Inconvenient mid-way technology
 - Internet access barriers
 - Smart-phone preference
 - Attitudes towards apps
 - Too intensive
 - Positive functions not specific to iPads
 - Lack of reliable/trustworthy information

Telephonic Counseling Using Computer Interface: OPTIMA

- **Design**: Cluster RCT of 2089 Medicare beneficiaries dx with OP randomized to either:
 - 1-year of telephone-based MI counseling (n = 1,046)
 - or a control group (n = 1,041) that received intermittent mailed educational materials.
 - 7 health educators documented calls in computer database information merged with Medicare claims

OPTIMA Results

- Medication adherence = primary outcome measured as median (interquartile range) medication possession ratio (MPR), 2nd outcomes fractures, falls
- 48% possession rate in Rx grp vs 40% in control
- No difference in fractures
- Customized computer interface easy to use and navigate by health educators

Gaming: Medication Adherence/ Self-Management- DM

- 58 children with Type I DM
- Gameboy system
- Three games:
 - Egg Breeder
 - Detective
- Access, Knowledge, Behaviors (diet, exercise), Usability, Acceptability

Assessment of Gaming Outcomes

- **Usability/Acceptability**
 - Data extraction low and high level
- **Surveys**
- **Knowledge**
- **Health-related Behaviors**
- **Health-related Outcomes**

Aoki et al, Studies Health Technology & Informatics 2004

Medication Tracking – Automated Systems

- Possible uses
 - Prompting for medications, exercise
 - Needing assistance with daily activities
 - Monitoring vital signs, blood sugar, weight, etc.
- Home PC with wireless interfaces serves as local intelligence.
 - PC gets updated instructions about client.
 - Staff use Web to retrieve, get data
 - Built-in home intelligence, daily reminders
 - Localization methods to check instruction followed

Medication Adherence: Targeting Individual, Provider & Environment

- Chart lists events
- Log kept of all events
 - Bottle taken
 - Bottle returned
 - Drawer open
 - Drawer shut
 - Inventory Update
 - Settings for inventory control

System Targets Individuals and Caregiver

- Patient interface
 - Medicine Alarm Clock
 - Prompts patient to take drug
 - Alerts if wrong medicine
 - Touch-screen
 - Enter symptoms interface
 - Forum for discussion
 - Correlate activity before/after
- Caregiver Interface
 - Records medicine use
 - Tracks over course of day
 - Keeps log of med use
 - Generates report for health care provider

Virtual Discharge Nurse and Patient Self-management

- VR Nurse
 - Reviews discharge instructions
 - Synthetic speech allows for acquisition of information with EMR
 - Avitar can assume attributes of patient
 - Promotes learning and self-management

Impact of Active Assistance Technology (AAT)

- Systematic Review of 41 articles
- Purpose: determine extent active technological capabilities of dynamic and adaptive information processing are applied in behavior change interventions and identify role of AAT
 - Active Assistance Technology - any technology involving automated processing of health or behavior change information that is ongoing as the user interacts with the technology.
 - (1) dynamic adaptive tailoring of health messages (2) interactive education (3) support for client self-monitoring of behavior change,

Dr Timothy Bickmore, Northeastern University

Kennedy, J Med Internet Res. 2012
Impact of Active Assistance Technology (AAT)

Results:
- Significant research on dialog systems, embodied conversational agents, and activity recognition.
- Physical Activity most covered topic.
- Most studies were early-stage research.
 - 6 RCTs, of these 4 were positive for behavior change and 1 were positive for acceptability.
- Empathy and relational behavior were significant research themes in dialog systems for behavior change.
- Few studies focused on interactive education (3) and self-monitoring (2).

Conclusions
- Potential capabilities and risks of AAT are not being fully explored in most current behavior change research.

Kennedy, J Med Internet Res. 2012

Telerheumatology Uses

Strengths
- Improved access to care
- Saves time and money
- Enhanced Communication among team (PCP, patient and Rheumatologist)

Challenges
- Assuring quality care
- Patient satisfaction
- Financial consideration/incentives to providers
- Medicolegal issues
- Technical Support

Roberts, Internal Medicine J, 2012

Meta-analysis of Telemedicine Rxs for Patients with Chronic Heart Failure

Clark R et al, BMJ, 2007

Summary

- Multiple factors are driving integration of technology in health
- Most published studies use web-based or texting formats
- mHealth via texting appears compatible with theories of health promotion (TPB and HBM)
 - Most mhealth in persons with Diabetes or for PA
 - mhealth interventions are not stand alone
- More positive outcomes with theory-based design and early engagement of interdisciplinary team

Summary

- Health game often integrates social support/social networks/ecological models though designs do not specify specific behavioral models
- E-communities
- Social feedback
- Partners in gaming
- VR systems can simultaneously provide motivation and ability to simulate daily activities
- Studies of health technology implementation are in the early stages, more to be discovered!
Conclusion

- Health and technology applications are on the rise.
- More likely to be adopted when has greater versatility.
- Better outcomes with behavioral theory-based interventions.
- Sometimes provides added safety benefits.
- Evolves with HP input early & often in design.

Future Implications

- Individuals with expertise in outcome assessment and behavioral science to become more engaged in design and implementation of technology-based interventions to determine impact of these programs.
- Determine which subgroups of individuals adopt and benefit technology-based interventions to promote health.

Thank you

m.iversen@neu.edu

References

- Kato P. Video Games in Health Care: Closing the Gap. Review Gen Physiol. 2010;142(2)1113-1131.