Cholesterol accumulation in synovial lining macrophages results in ectopic bone formation during experimental osteoarthritis

W de Munster, AB Blom, MM Helsen, B Walgreen, PM van der Kraan, LAB Joosten, WB van den Berg, PFEM van Lent

Department of Experimental Rheumatology, Radboud university medical center

2013 ACR Annual Meeting

Disclosure

We have no competing interests

Osteoarthritis (OA)

Not only a disease of the cartilage, also synovial involvement.

Synovial macrophages and OA

• Essential for cartilage destruction during experimental OA.1

• Important players in driving inflammatory and destructive responses in OA.2

• Crucial for osteophyte formation (ectopic bone formation at cartilage margins) and enthesophyte formation (ectopic bone in tendons or ligaments).3

Modified LDL and macrophages

• In an inflammatory milieu, LDL can be modified.2

• Increased LDL levels will therefore result in enhanced oxLDL levels during inflammatory processes.3

• OxLDL is taken up by macrophages via SR-A and CD36.4,5

• OxLDL uptake can change the phenotype of macrophages.4,5

Hypothesis

Objective: Cholesterol-rich diet

LDL receptor deficiency

Experimental OA model

Aggravation OA pathology
Experimental design

Collagenase injection:
- Arthritis damage
- Cartilage instability
- Ligament damage
- Osteophyte formation and synovial activation

LDLr deficiency and/or a cholesterol-rich diet leads to increased serum cholesterol levels

p<0.05 compared to WT normal
***p<0.001 compared to all other groups

LDLr deficiency or a cholesterol-rich diet does not affect cartilage damage

Synovial lining cells take up ApoB during cholesterol-rich conditions, suggesting oxLDL accumulation

LDLr deficiency or a cholesterol-rich diet does not affect synovial thickening

A cholesterol-rich diet enhances synovial S100A8 expression in WT mice (synovial activation)

LDLr deficiency or a cholesterol-rich diet does not affect cartilage damage

S100A8 staining synovial lining

Introduction - Experimental Design - Results - Conclusions
Introduction

LDLr deficiency or a cholesterol-rich diet does not affect cartilage damage

Results

LDLr deficiency and a cholesterol-rich diet increase enthesophyte formation

Discussion

Ectopic bone formation due to growth factors

Growth factors capable of ectopic bone formation

- TGF-β is secreted by many cell types, including macrophages, in a latent form.
- TGF-β is activated by proteinases.
 - Active TGF-β can be detected using a Luciferase reporter gene assay, which detects active TGF-β signaling (CAGA box in PAI-1 promoter).
- Also Bone Morphogenetic Proteins (BMP) 2, 4 and 7 have shown to induce ectopic bone formation.
 - BMP signaling can be detected using a BMP Responsive Element (BRE) Luciferase reporter gene assay.

LDLr/− mice on a cholesterol-rich diet have increased levels of active TGF-β in synovial washouts compared to WT mice on a cholesterol-rich diet

Experimental Design

<table>
<thead>
<tr>
<th>LDLr deficiency or a cholesterol-rich diet does not affect cartilage damage</th>
<th>LDLr deficiency and a cholesterol-rich diet increase enthesophyte formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT normal</td>
<td>WT normal</td>
</tr>
<tr>
<td>LDLr−/− cholesterol diet</td>
<td>LDLr−/− cholesterol diet</td>
</tr>
</tbody>
</table>

Figure Legends

Figure 1

Cartilage damage

Figure 2

Ectopic Bone Formation

Figure 3

Osteophyte Formation

Figure 4

LDLR-/- cholesterol diet

Figure 5

Enthesophyte Formation
Conclusions

LDL cholesterol accumulation during experimental OA aggravates pathology by activation of synovial resident cells and anabolic pathways.

Acknowledgements

Radboud university medical center
Department of Experimental Rheumatology
Therapeutics
Peter van Lent, PhD
Arjan Kok, PhD
Peter van der Graaf, PhD
Annert Dijtje, PhD
Birgitte Wolven, BSc
Monique Harms, BSc
Wim van den Berg, PhD
Department of Medicine and Nijmegen Institute for
Infection, Inflammation and Immunity
Luo (Yuzhen), PhD
Ludoe University Medical Center
Department of Molecular Cell Biology
Jelle van Dijk, PhD
University of Amsterdam (NHL)
Institute of Cell biology
Thomas Vogt, PhD
Johannes Kehl, PhD
Wouter.deBooijt@radboudumc.nl

In vitro design

- M-CSF
- Differentiation into macrophages (4 days)
- Control
- 50 μg/mL oxLDL (24 hours)
- RNA expression growth factors and functional Luc-assay

OxLDL-stimulation of macrophages increases anabolic processes by activation of TGFβ, rather than production of TGFβ and BMP

- Gene expression Growth factors
- Active TGF-β
- Active BMP

Conclusions

- Increased serum LDL levels result in enhanced ApoB accumulation in synovium → oxLDL accumulation in LDLr deficient mice.
- OxLDL accumulation results in increased activation of synovial macrophages in WT mice.
- OxLDL accumulation during experimental OA results in ectopic bone formation in the murine knee joint.
- Cholesterol-rich models show higher levels of active TGF-β in synovial washouts than models with less cholesterol accumulation.
- OxLDL accumulation leads to activation of TGF-β and, to a lesser extent, activation of BMP.