Complement Component C5a Permits the Co-existence of Pathogenic Th17 Cells and Type I Interferon in Lupus

Marc C. Levesque, Sudesh Pawaria, Kritika Ramani, Kelly Maers and Partha Biswas

Division of Rheumatology and Clinical Immunology
University of Pittsburgh School of Medicine
Pittsburgh, PA USA

Disclosures

There are no relevant disclosures related to this work.

Systemic Lupus Erythematosus (SLE)

Systemic autoimmune disorder with multi-organ involvement

- Dysregulated B cells
- Autoantibodies
- Immune complex deposition resulting in end organ damage

CD4+ T helper cells in the pathogenesis of SLE

Deplete CD4+ T cells → Resistant to Lupus Nephritis

- Auto Antibody production
- Chronic Inflammation
- Tissue damage

Deregulated production of **IL-17** and **IL-21** may be one of the critical mechanisms by which T helper cells contribute to SLE pathogenesis.

TH17 cells: key players in autoimmunity

- Th17 cells and their signature cytokine IL-17 drives lupus pathogenesis in multiple mouse models of lupus including MRL.Faspr, B6.1pr, 8XH2, FcgR2b−/− mice.
- Therapeutic interventions using IL-23R Ab, IL-21RFc or ROCK inhibitors that block Th17 differentiation ameliorated lupus nephritis in these mouse models.
- An increased frequency of Th17 cells was reported in SLE patients and Th17 cell numbers correlated with disease activity in the majority of studies.

Type I IFN inhibits the differentiation of Th17 cells

- Mice with defects in type I IFN receptor (IFNAR) developed more severe Experimental Autoimmune Encephalitis (EAE).
- Type I IFN-mediated IL-27 production by dendritic cells and macrophages blocked Th17 differentiation.
- IFN-β is widely used for the treatment of Multiple Sclerosis.

How are pathogenic Th17 cells generated in SLE in the presence of an environment characterized by high IFN-1 levels?
Complement component C5a-C5aR activation on innate cells regulate Th17 differentiation

- C5a is a protein fragment released from complement component C5.
- C5a binds to C5aR.
- Activation of C5aR is a primary event in the pathogenesis of SLE.

C5a-C5aR interactions inhibit Th17 differentiation through diminished production of TGF-β, IL-6 and IL-23 in a house dust mite extract challenge model.

C5a receptor (C5aR) deficiency in SKG mice inhibited the differentiation and expansion of Th17 cells after mannose or beta-glucan treatment, and consequently suppressed the development of arthritis.

Proposed model of C5a-mediated regulation of Th17 cells via IL-27

C5a inhibition of IFN-I mediated suppression of Th17 differentiation in lupus-prone mice

C5a-C5aR interactions inhibited IFN-I mediated sIL-27 production in a PI3K/Akt dependent manner

C5aR activation on macrophages inhibited IRF-1 expression

Resistance to lupus nephritis development in C5aR−/− mice was associated with increased IL-27 production and diminished number of Th17 cells
Inverse correlation between serum C5adesArg and IL-27 levels and between IL-27 and the percentage of Th17 cells in the peripheral blood of SLE patients

\[r = -0.66; p < 0.001 \]

\[r = -0.86; p < 0.0001 \]

\[r = 0.74; p = 0.001 \]

C5a inhibits IFN-I-induced IL-27 production in macrophages from SLE patients.

\[\Delta Ct (IL-27(p28)) \]

C5a in the serum of lupus patients inhibits IFN-I-induced IL-27 production in macrophages

\[\Delta Ct (IFN-I) \]

Conclusion

Acknowledgements

Lab members

Sudesh Pawaria
Kritika Ramani
Kelly Maers
Paige Davison
Marianne Pan
Partha Biswas
Donald Jones
Ehrich Wilkerson

Collaborators

Youhua Liu
Larry Kane

Lupus Center of Excellence

Kim Liang
Larry Moreland
Ernest Vina
Roshan Dhawale
Ghaith Noaieh

Research supported by Dept. of Medicine and the Lupus Center of Excellence, University of Pittsburgh School of Medicine