Host genetic background disrupts the relationship between microbiota and gut mucosal tolerance leading to spondyloarthritis and ileitis after a dectin-1 trigger

Spondyloarthritis

- SpA
 - 1-3% population
 - Ankylosing spondylitis, psoriatic arthritis, reactive arthritis, enthesopathic arthritis, undiff.
 - Peripheral & axial joints, intestine, eyes, skin

- Genetic risk factors
 - HLA-B27 allele (90% AS)
 - Genes involved in IL-17 signaling: IL-23R, IL-12B, STAT3, CARD9, TYK2

- IL-23 and SpA
 - IL-23R risk allele increased signaling
 - IL-23 expression alone sufficient for SpA
 - Anti-IL-23 antibody (ustekinumab) blocks disease in human and mouse

IL-23-dependent mouse model of human SpA

- SKG mouse
 - Zap70 constitutive mutation (BALB/c)
 - Low TCR signal strength
 - Lymphopenia

- SKG disease phenotype
 - Beta-glucan curdlan-mediated (IYP)
 - Arthritis, spondylitis, enthesitis, uveitis, dactylitis, ileitis

Spondyloarthritis

- SpA
 - 1-3% population
 - Ankylosing spondylitis, psoriatic arthritis, reactive arthritis, enthesopathic arthritis, undiff.
 - Peripheral & axial joints, intestine, eyes, skin

- Genetic risk factors
 - HLA-B27 allele (90% AS)
 - Genes involved in IL-17 signaling: IL-23R, IL-12B, STAT3, CARD9, TYK2

- IL-23 and SpA
 - IL-23R risk allele increased signaling
 - IL-23 expression alone sufficient for SpA
 - Anti-IL-23 antibody (ustekinumab) blocks disease in human and mouse

SKG mouse model of SpA: disease initiation and progression

- Day 0 – Treat with 3 mg curdlan i.p. (beta-glucan) Dectin-1 receptor
- Day 0 Day 7 Week 5 Week 8

Arthritic disease (spondylitis, enthesitis, sacroiliac and ankle arthritis, plantar fasciitis)

Inflammatory bowel disease (ileitis)

Linda Rehaume 1, Sarahs Mondal 2, Daniel Aguinio De Cazorla 3, Jared Velasco 3, Helen Benham 4, Sumaira Hasnain 1, Benji-Russo 1, Philip Kember 2, Mark Morrison 4, Michael McGuckin 4, Ranjan Thomas 4

1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
2 Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW
3 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
4 Center for Inflamma and Reproductive Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW

References

- Stanislas Mondot, Daniel Aguirre De Cárcer, Philip Hansbro, A. The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
- Nothing to disclose
Microbes and SpA

Environmental trigger
- IL-17 immunity important pathogen control
- Infection (reactive arthritis)
- Microbiota implicated

Research Questions
- How do the microbiota and the host interact to induce IL-23?
- How does IL-23 promote disease?

Hypotheses
1) Host genetics influence microbiota composition
2) Microbiota (bacteria) affect disease severity in curdlan-treated SKG mice

Profile SKG microbiota

Acute inflammatory response is not dependent on the microbiota

Microbiota composition affects the severity of peripheral and axial arthritis, and ileitis in curdlan-treated SKG mice

However microbiota affect neutrophil IL-17A production in the peritoneal cavity

Co-housing SKG and BALB/c mice alters the genetic susceptibility to ileitis

GF = germ-free (no microbes)
SPF = specific pathogen-free (microbiota) altered Shaeder flora = 8 bacteria species

10% germ free SKG mice developed severe arthritis, no ileitis

Sequencing of microbiota d0 (untreated), d1, d3, d7, d14:
Do SKG and BALB/c microbiota normalize after 4 weeks co-housing? NO
Can curdlan induce microbiota shift? YES
Are there ‘pathogenic’ SKG strains colonizing diseased BALB/c? Are there ‘protective’ BALB/c strains colonizing protected SKG?
Genetic background and environmental trigger influence the microbiota composition

Impact of curdlan treatment on the microbiota following co-housing:
Dysbiosis!

Microbiota changes are associated with TLR4 signaling

Microbiota are associated with intestinal ER stress, IL-23 and MLN IL-17A production

Microbiota changes and intestinal stress are associated with reduced mucus-producing cells and tight junction protein expression

Conclusions and Implications

SKG microbiota
- ZAP70^W163C allele (reduced TCR signaling) alters microbiota composition of naïve SKG mice
- Curdlan triggers changes within the microbiota that are influenced by allele
- Microbiota composition affects disease severity

Clinical implication
- Genetic susceptibility may perturb microbiota of humans with SpA
- Microbial species predictive for disease development of at risk people
- Microbiota intervention prophylactic treatment
Genetics promote IL-23

Stressful interaction

IL-23

IL-17

β-glucan signaling

Dectin-1, neutrophils, γδ T cells, IL-17, NETs

Innate response through

Thyroid stromal cells

low TCR signaling immunodeficient

Inadequate microbe control or immune regulation

Genetics dictate microbiota

ATB treatment

Curdian primes IL-17A production in MLN of SKG mice

Acknowledgements:

UQ Diamantina Institute
- Ranjeny Thomas
- Helen Benham
- Athan Baillet
- Jared Velasco
- Merja Ruutu
- Thomas Lab
Princess Alexander Hospital
- Geoffrey Strutton
- Michael Osborne
- Cameron McKenzie
- Sarah Vivian

Walter and Eliza Hall Institute
- Athan Baillet

Mater Medical Research Institute
- Michael McGuckin
- Sumaira Hasnain
- Timothy Florin

Lions Eye Institute
- Marjapa Degli-Esposti

Kyoto University
- Shimon Sakaguchi

University of Newcastle
- Philip Hansbro

Biological Research Facility
- Michael Osborne

CSIRO
- Mark Morrison
- Stanislas Mondot
- Daniel Aguirre De Cácer

UQ Diamantina Institute
• Ranjeny Thomas
• Helen Benham
• Athan Baillet
• Jared Velasco
• Merja Ruutu
• Thomas Lab
Princess Alexander Hospital
• Geoffrey Strutton
• Michael Osborne
• Cameron McKenzie
• Sarah Vivian
Walter and Eliza Hall Institute
• Athan Baillet
Mater Medical Research Institute
• Michael McGuckin
• Sumaira Hasnain
• Timothy Florin
Lions Eye Institute
• Marjapa Degli-Esposti
Kyoto University
• Shimon Sakaguchi
University of Newcastle
• Philip Hansbro

Clostridia-related Gram-positive bacteria

Segmented Filamentous Bacteria – Th17??

Tight junctions intact in naïve and curdlan-treated SKG mice

SKG terminal ileum 15X EM

Day 0

Day 7
Acute inflammatory response is not dependent on the microbiota

Microbiota are necessary and sufficient for the development of peripheral and axial arthritis, and ileitis in curdlan-treated SKG mice

Curdlan triggers arthritis, and inflammatory bowel disease in SKG mice in an IL-23-dependent manner

SKG mouse model of human SpA

- SKG mouse description:
 - S. Sakaguchi (Nature 2003)
 - ZAP70W163C mutation
 - BALB/c genetic background
 - low TCR signal strength
 - lymphopenic, Th17 skewed T cells

- SKG disease phenotype:
 - Arthritis, spondylitis, enthesitis, uveitis, dactylitis, bone erosion and formation, ileitis
