An Intronic CR2 Polymorphism Associated with Systemic Lupus Erythematosus Alters CTCF Binding and CRI Expression

Jian Zhao, Brendan M Giles, Rhonda L Taylor, Gabriel A Yette, Kara M Lough, Lawrence F Abrahams, Hui Wu, Jennifer A Kelly, Stuart B Glenn, Adam J Adler, Adrienne H Williams, Mary E Comeau, Julie T Ziegler, Miranda C Marion, Maria E Narcón-Quintero for the BIOLUPUS and GENLES Networks, Graciela S Alarcón, Juan-Manuel Anaya, Sang-Cheol Bae, Dam Kim, Hye-Soon Lee, Lindsey A Crawford, Barry I Freedman, Gary S Gilkeson, Joan T Merrill, Kathy Moser Sivils, Michelle A Petri, Miranda C. Marion, Marta E. Alarcón-Riquelme, Mary E. Comeau, Julie T. Ziegler, Miranda C. Marion, Maria E. Narcón-Quintero, Jan-Manuel Anaya, Hye-Soon Lee, Lindsey A Crawford, and Susan A Boackle.

Complement Receptor 2

- Expressed primarily on B cells and follicular dendritic cells
- Known ligands
 - C3 degradation products: iC3b, C3d(g)
 - CD23
 - IFN-α
 - EBV gp350
- Important for humoral immunity
 - Target antigen/immune complexes to the germinal center
 - Functions with CD19 to augment BCR mediated signals

Role of CR2 in SLE

- Levels decreased by 50-60% on B cells of lupus patients and in mouse models (Wilson, et al., 1986; Levy, et al., 1992; Marquart, et al., 1995; Takahashi, et al., 1997)
- Earlier onset and more aggressive disease in Cr2 deficient mice (Prodeus, et al., 1998; Wu, et al., 2002)
- Candidate gene in the murine Sle1c lupus susceptibility interval (Boackle, et al., 2001)
- Genetic associations of CR2 haplotypes with SLE
 - Major allele haplotype associated with increased risk of disease \(\left[P=1 \times 10^{-5}; \text{OR} 1.45 \right] \) (Wu, et al., 2007)
 - Minor allele haplotype associated with decreased risk of disease \(\left[P=0.016; \text{OR} 0.90 \right] \) (Douglas et al., 2009)
- Causal variants remain elusive

Methodology

- Large Lupus Association Study 2 (LLAS2)
 - 15,750 unrelated case-control subjects
 - European American (EA): 3,872 cases vs. 3,449 controls
 - African American (AA): 1,676 cases vs. 1,929 controls
 - Asian (AS): 1,265 cases vs. 1,260 controls
 - Hispanic (HS): 1,492 cases vs. 807 controls
 - Fine-mapped 57.6kb region spanning ~10kb upstream of CR2 to intron 1 of CR1.
 - Variants subjected to association testing and trans-ancestral meta-analysis

Aims of Current Study

- Fine-map CR2 and surrounding region to identify causal variants.
- Investigate the specific contributions of CR2 to disease development by exploring the association of CR2 polymorphisms with clinical manifestations of lupus.

Disclosures

- Nothing to disclose
Association of rs1876453 with SLE

- EA
- AA
- HS
- AS
- Meta

\[P = 4.2 \times 10^{-4}; OR 0.85 \]

Strongest Association is with dsDNA Autoantibodies

- EA
- AA
- HS
- AS
- Meta

\[P = 7.6 \times 10^{-7}; OR 0.71 \]

rs1876453 is Located in a Transcription Factor Hot-Spot

- ENCODE Project: http://genome.ucsc.edu/encode/

CCCTC-Binding Factor (CTCF)

- 11 zinc finger protein
- Multiple functions
 - Regulates transcription
 - Enhancer insulating
 - Multi-protein complexes
 - Long range effects
 - Intra- and inter-chromosome

Minor (A) Allele Decreases Transcription Factor Binding Affinity

Complex C Includes CTCF

- [Rhonda Mason and Daniela Ulgiati](#)
rs1876453 Alters CTCF Binding

rs1876453 Alters CR1 Expression on Primary B cells

Potential Protective Mechanisms

- CR2-mediated
 - Increased ligand generation
 - Chakravarty et al., 2001
 - Lee et al., 2005
- CR1-mediated
 - Inhibitory receptor
 - Jozsi et al., 2002
 - Kremlitzka et al., 2012

Summary

- rs1876453 is associated with decreased risk of SLE and dsDNA autoantibodies
 - Develop prior to clinical onset
 - Fluctuate with disease activity
 - Directly pathogenic
- rs1876453 is in a transcription factor hot spot
 - Minor allele reduces transcription factor binding affinity, including reduced CTCF occupancy
 - Other transcriptional changes?
- Minor allele is associated with increased CR1 mRNA and protein levels in resting B cells
 - Transcriptional mechanism?
 - Effects on B cell function?

Acknowledgements

- University of Colorado School of Medicine
 - Susan Boackle, MD
 - Gabriel Veteto
 - Kasie Lough
 - Agena Gaduklin
 - Carma A. Homme
 - Najib Jarr
 - Lauren Kuhlman

- UCLA
 - Betty Tsao, PhD
 - Jin-Jiao, PhD
 - Hui Wu, MD

- University of Western Australia
 - Daniela Ulgiati, PhD
 - Rhonda Mason
 - Lawrence J. Abraham, PhD

- LLAS2 collaborators

- Funding:
 - National Institutes of Health
 - Alliance for Lupus Research
 - Lupus Research Institute
 - US Department of Veteran Affairs
 - US Department of Defense
 - Arthritis Foundation
 - Arthritis National Research Foundation
 - Korea Healthcare Technology R&D Project
 - Wellcome Trust
 - Kirkland Scholar Award
 - Arthritis Research UK
 - Wake Forest School of Medicine Center for Public Health Genomics