Low Appendicular Bone Mass Predicts Mortality in Patients with Rheumatoid Arthritis

Mark E. Hall, M.D.
Inmaculada del Rincon, M.D. MSc
Jose F. Restrepo, M.D.
Daniel F. Battafarano, D.O.
Jakob Algulin
Agustin Escalante, M.D.

Disclosures

• Mr. Algulin is employed by Sectra AB, a Swedish corporation specializing in medical image management.

Background

• Rheumatoid arthritis (RA) patients have:
 • reduced lifespan compared to the general population\(^1\)
 • Increased risk for osteoporosis and fracture risk (included in FRAX)
 • RA patients most often die of cardiovascular causes
 • There may be an association between osteoporosis and increased atherosclerosis\(^2\)

\(^1\)Gonzalez et al. A&R. 2007 Nov 56(11)
\(^2\)Ye et al. PLoS One. 2016 May 5;11(5)

Purpose

• To examine the relationship between appendicular bone mass and mortality risk measured from hand radiographs using Digital X-ray Radiogrammetry in a large cohort of RA patients.

STUDY METHODS

RA Cohort Design

• Recruitment period: January 1996 – April 2001
• Location: 6 rheumatology clinics in San Antonio, Texas
 • county-funded clinic
 • Veterans Affairs clinic
 • private faculty practice
 • private group practice
 • Army clinic
 • Air Force clinic
• Consecutive Patients: diagnosed with RA (in accordance with 1987 ACR criteria)
Mortality Status Assessment

- If unable to contact patient:
 - Family
 - Friends
 - Physicians
 - Neighbors
 - Obituaries
 - Public Health Dept.
 - Online mortality databases
 - Review of medical records

- All reported deaths were confirmed by review of death certificate.

Study Inclusion Criteria from RA Cohort

- 779 patients meeting RA criteria were recruited into the RA Cohort
- 653 patients from the cohort who had hand radiographs were included in the present study
- Must have all variables of interest (listed on previous slide) at baseline assessment
- Must have a DXR-determined bone mineral density
- Must have known mortality status (confirmed living or deceased)

Study Variables

- Patient demographics
 - Age
 - Gender
 - Ethnicity

- Cardiovascular risk factors
 - Diabetes mellitus
 - Hypertension
 - Hyperlipidemia
 - Past/current smoker
 - Body mass index

- RA manifestations/treatment
 - Tender joint count
 - Swollen joint count
 - Measured serum ESR
 - Steroid usage

- RA damage measure
 - Sharp Score

- Appendicular bone mineral density (BMD) via DXR

Evaluation of Bone Mineral Density with DXR

- Digital X-ray Radiogrammetry (DXR) is an established technology used to calculate appendicular BMD using digitized hand radiographs

- Is automated, independent of human operator interventions

- DXR measures the Metacarpal Index (MCI) = ratio of total bone width to cortical thickness

\[MCI_{dp} = \frac{2 \ T_{dp}}{W_{dp}} \]
Important comments on DXR

- Quantifies peri-articular metacarpal bone loss
- Results correlate with DEXA in assessing total skeletal loss of bone mass
- In RA patients, is more sensitive than DEXA in detecting early bone loss
- Low DXR:
 - Is strongly associated with more RA clinical disease activity
 - Is associated with radiographically significant joint destruction
 - May predict subsequent radiographic damage

Data Analysis

- Cox proportional hazards regression
 - Measure association of predictor variables on primary outcome
 - Adjust for potential confounding factors on our relationship of interest (i.e. BMD and mortality)
- Kaplan-Meier method
 - Produced curve showing survival probability over time based on their reported DXR-BMD

STUDY RESULTS

Distribution of Appendicular Bone Mass

- Mean 5.08 decigram/cm²
- Standard Deviation 1.03 decigram/cm²
- Range 2.65 – 7.75 decigram/cm²

DXR-BMD Quartiles

- 653 Patients with RA
- 85 DXR-BMD measurements
- 2.7 – 4.4
decigram/cm²
- 4.4 – 5.1
decigram/cm²
- 5.1 – 5.9
decigram/cm²
- 5.9 – 7.8
decigram/cm²

Baseline characteristics of patients in each BMD quartile.

- Mean ± SD
- *P<0.001
- †P<0.05
- §P<0.01

<table>
<thead>
<tr>
<th>Quartile</th>
<th>BMD Q1</th>
<th>BMD Q2</th>
<th>BMD Q3</th>
<th>BMD Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, mean ± SD years</td>
<td>64 ± 9†</td>
<td>60 ± 12†</td>
<td>54 ± 13 †</td>
<td>54 ± 13</td>
</tr>
<tr>
<td>No. (%) Man</td>
<td>183(21)*</td>
<td>180(22)*</td>
<td>163(19)</td>
<td>163(19)</td>
</tr>
<tr>
<td>No. (%) Caucasian</td>
<td>373(23)*</td>
<td>366(22)*</td>
<td>163(19)</td>
<td>163(19)</td>
</tr>
<tr>
<td>CV Risk Factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus, no. (%)</td>
<td>35(21)*</td>
<td>26(16)*</td>
<td>18(11)</td>
<td>13(8)</td>
</tr>
<tr>
<td>Hypertension, no. (%)</td>
<td>89(54)§</td>
<td>93(57)†</td>
<td>71(44)</td>
<td>63(39)</td>
</tr>
<tr>
<td>Hypercholesteremia, no. (%)</td>
<td>14(9)</td>
<td>13(8)</td>
<td>9(6)</td>
<td>15(9)</td>
</tr>
<tr>
<td>Past or current smoker, no. (%)</td>
<td>79(48)†</td>
<td>98(60)‡</td>
<td>97(60)‡</td>
<td>115(71)</td>
</tr>
<tr>
<td>BMI, mean ± SD kg/m²</td>
<td>28 ± 7§</td>
<td>29 ± 8</td>
<td>30 ± 6</td>
<td>30 ± 7</td>
</tr>
<tr>
<td>RA Manifestations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tender joint count, mean ± SD</td>
<td>17 ± 13</td>
<td>14 ± 12</td>
<td>16 ± 13</td>
<td>13 ± 12</td>
</tr>
<tr>
<td>Tender joint count, mean ± SD</td>
<td>9 ± 7</td>
<td>8 ± 6</td>
<td>9 ± 7</td>
<td>8 ± 7</td>
</tr>
<tr>
<td>ESR, mean ± SD mm/hour</td>
<td>49 ± 28†</td>
<td>48 ± 28†</td>
<td>35 ± 24</td>
<td>35 ± 22</td>
</tr>
<tr>
<td>SR Crystalline Measure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sharp score</td>
<td>123 ± 63§</td>
<td>98 ± 61‡</td>
<td>73 ± 46‡</td>
<td>47 ± 38</td>
</tr>
</tbody>
</table>
Mortality by Quartile

<table>
<thead>
<tr>
<th>BMD Q1</th>
<th>BMD Q2</th>
<th>BMD Q3</th>
<th>BMD Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. (%) deaths</td>
<td>100 (61)†</td>
<td>71 (44)†</td>
<td>38 (23)</td>
</tr>
<tr>
<td>Person-years</td>
<td>1921</td>
<td>2127</td>
<td>2343</td>
</tr>
</tbody>
</table>

Total No. of Deaths = 252

†P≤0.001. †P≤0.05. §P≤0.01.

Kaplan-Meier Curve

- Analysis Time (years)
- BMD Quartiles (decigrams/cm²)
- Survival Probability
- Mortality by Quartile

All-Cause Mortality

<table>
<thead>
<tr>
<th></th>
<th>Mortality Hazard Ratio (per 1 decigram/cm² BMD)</th>
<th>95% Confidence Interval</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted</td>
<td>1.5638</td>
<td>1.3870 – 1.7632</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Model 1</td>
<td>1.5687</td>
<td>1.3489 – 1.8242</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.6079</td>
<td>1.3784 – 1.8756</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Model 3</td>
<td>1.4691</td>
<td>1.2463 – 1.7317</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Model 4</td>
<td>1.3345</td>
<td>1.1043 – 1.7128</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Assessing Potential Confounders

- Sequence of Cox Proportional Hazard Models
 - Model 1: DXR-BMD + demographic variables
 - Model 2: Model 1 + cardiovascular risk factors
 - Model 3: Model 2 + clinical RA manifestation measures + steroid use
 - Model 4: Model 3 + Sharp Score

Conclusions

- RA patients with low appendicular BMD have greater mortality independent of potential confounders
- DXR can be useful tool in assessing mortality risk in patients with RA
- More research is needed to examine the mechanism underlying the association between low BMD and increased mortality
Study Limitations

- Only all-cause mortality was considered in this study without analysis of more specific causes.
- Glucocorticoid dosing was not evaluated in the present study as a potential mortality confounder.
- Did not address potential mechanisms associated with low BMD which could contribute to increased mortality such as fractures.

Acknowledgements

- R. Molina, M.D.
- R. Zuniga-Montes, M.D.
- P. Wickersham, M.D.
- J. Ayala, M.D.
- E. Allen, MD
- A. Ballester-Fiallo, M.D.
- J. Zamora-Quezada, M.D.
- A. de Jesus, M.D.
- R. Cuevas, M.D.
- T. Rennie, M.D.
- H. Draeger, M.D.
- L. Staudt, M.D.
- L. Nguyen, M.D.
- Rheumatology Fellows
- CORAZON and ORALE study research staff